已经得到个称赞     给我点赞
  • 教师姓名:王永青
  • 性别:
  • 主要任职:Dean of School of Mechanical Engineering
  • 电子邮箱:yqwang@dlut.edu.cn
  • 职称:教授
  • 所在单位:机械工程学院
  • 学位:博士
  • 学科:机械电子工程. 机械制造及其自动化
  • 毕业院校:大连理工大学
  • 曾获荣誉:国家技术发明一等奖1项、国家技术发明二等奖1项、教育部技术发明一等奖2项、教育部科技进步一等奖1项、中国机械工业科学技术一等奖1项,第九届辽宁省优秀科技工作者
  • 办公地点:机械工程学院1#楼346-2房间
  • 联系方式:yqwang@dlut.edu.cn; 0411-84708420
论文成果
当前位置: 中文主页 >> 科学研究 >> 论文成果 >> Milling of Ti all... >>同专业硕导
Milling of Ti alloy honeycomb treated by ice fixation in cryogenic
  • 点击次数:
  • 论文类型:期刊论文
  • 发表时间:2018-11-02
  • 发表刊物:MACHINING SCIENCE AND TECHNOLOGY
  • 收录刊物:SCIE、Scopus
  • 卷号:22
  • 期号:6
  • 页面范围:914-933
  • ISSN号:1091-0344
  • 关键字:Defects; equivalent strength; ice fixation; milling force; Ti alloy honeycomb
  • 摘要:This article presents the first comprehensive investigation on ice fixation milling method for titanium (Ti) alloy honeycomb with cryogenic cooling. Milling simulation model of ice fixation was established, the material was treated by ice fixation process, and a series of cryogenic experiments was conducted by CNC milling machine. The honeycomb properties and reasons of machining defects were analyzed in details, whilst cryogenic milling mechanism with ice fixation was deduced. The analysis indicated that compared to the conventional processing way, the ice fixation milling surfaces have great improvement, and the processing defects such as burr, collapse edge are effectively suppressed, as well as ice fixation cryogenic method can improve the strength of honeycomb. Meanwhile, the cutting depth has greater influence on surface quality. Furthermore, the influence order of cutting parameters on the milling force: cut deep is the largest and more than three times can be improved, followed by feed speed, and the spindle speed has minimal impact. Conclusion: for efficient processing of Ti alloy honeycomb material with small in-plane radial equivalent strength and low rigidity thin-wall, the ice fixation provides a new processing method with cryogenic cooling.
  • 发表时间:2018-11-02