已经得到个称赞     给我点赞
  • 教师姓名:王永青
  • 性别:
  • 主要任职:Dean of School of Mechanical Engineering
  • 电子邮箱:yqwang@dlut.edu.cn
  • 职称:教授
  • 所在单位:机械工程学院
  • 学位:博士
  • 学科:机械电子工程. 机械制造及其自动化
  • 毕业院校:大连理工大学
  • 曾获荣誉:国家技术发明一等奖1项、国家技术发明二等奖1项、教育部技术发明一等奖2项、教育部科技进步一等奖1项、中国机械工业科学技术一等奖1项,第九届辽宁省优秀科技工作者
  • 办公地点:机械工程学院1#楼346-2房间
  • 联系方式:yqwang@dlut.edu.cn; 0411-84708420
论文成果
当前位置: 中文主页 >> 科学研究 >> 论文成果 >> Research on milli... >>同专业硕导
Research on milling hole of AFRP based on cryogenic cooling processing
  • 点击次数:
  • 论文类型:期刊论文
  • 发表时间:2020-02-01
  • 发表刊物:INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 收录刊物:EI、SCIE
  • 卷号:106
  • 期号:11-12
  • 页面范围:5277-5287
  • ISSN号:0268-3768
  • 关键字:Aramid fiber-reinforced composite; Cryogenic cooling; Milling hole; Machining properties; Milling force; Milling hole defects
  • 摘要:The aramid fiber-reinforced composite (AFRP) has special the structure and physical properties. Although, the dry helical milling hole method could improve the machining precision and reduce the cutting force for AFRP. There were still some problems such as hole defects, limited hole depth, and low machining efficiency. In this paper, the tool cutting point trajectory model based on sample and tool coordinate system was established. The cutting force model of milling hole considering fiber orientation was constructed. A series of cryogenic cooling milling hole tests were carried out using liquid nitrogen internal jet cutting equipment. The results show that the cutting path and cutting force are mainly related to axial feed, tangential feed, and center distance between tool and hole axis. Similarly, type I and II defects are serious at low-speed dry milling hole, as well as obvious type III ablative defects at high speed. Compared with dry milling hole, the cutting force in cryogenic cooling is greater at the same cutting speed. And the influence of tool axial feed on axial force and tangential force is larger than that of tangential feed. Meanwhile, the property changes of resin base and composite in cryogenic are the main reasons for inhibiting type I and II milling hole defects. Furthermore, the cryogenic medium cooling is the reasons for inhibiting type III defects, as well as passivation and adhesion of tool side edge and flank. So the cryogenic cooling milling method can improve milling hole effect and restrict machining defects for AFRP.
  • 发表时间:2020-02-01