董悦生

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:中国协和医科大学

学位:博士

所在单位:生物工程学院

学科:生物化工. 微生物学. 微生物与生化药学

办公地点:辽宁省大连市高新园区凌工路2号大连理工大学西部校区生物工程学院309室

联系方式:辽宁省大连市高新园区凌工路2号大连理工大学生物工程学院

电子邮箱:yshdong@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Trivaric acid, a new inhibitor of PTP1b with potent beneficial effect on diabetes

点击次数:

论文类型:期刊论文

发表时间:2017-01-15

发表刊物:LIFE SCIENCES

收录刊物:SCIE、PubMed、Scopus

卷号:169

页面范围:52-64

ISSN号:0024-3205

关键字:Trivaric acid; Protein tyrosine phosphatase 1b; Insulin sensitivity; Insulin signalling pathway; Diabetes

摘要:Aim: To screen a potential PTP1b inhibitor from the microbial origin-based compound library and to investigate the potential anti-diabetic effects of the inhibitor in vivo and determine its primary anti-diabetic mechanism in vitro and in silica.
   Methods: PIP1b inhibitory activity was measured using recombination protein as the enzyme and p-NPP as the substrate. The binding of the inhibitor to PTP1b was analysed by docking in silico and confirmed by ITC experiments. The intracellular signalling pathway was detected by Western blot analysis in HepG2 cells. The anti-diabetic effects were evaluated using a diabetic mice model in viva.
   Results: Among 545 microbial origin-based pure compounds tested, trivaric acid, a tridepside, was selected as a PTP1B inhibitor exhibiting strong inhibitory activity with an IC50 of 173 nM. Docking and ITC studies showed that trivaric acid was able to spontaneously bind to PTP1b and may inhibit PTP1b by blocking the catalytic domain of the phosphatase. Trivaric acid also enhanced the ability of insulin to stimulate the IR/IRS/Akt/GLUT2 pathway and increase the glucose consumption in HepG2 cells. In diabetic mice:trivaric acid that had been encapsulated into Eudrgit L100-5.5 showed significant anti-diabetic effects, improving insulin resistance, leptin resistance and lipid profile and weight control at doses of 5 mg/kg and 50 mg/kg.
   Significance: Trivaric acid is a potential lead compound in the search for anti-diabetic agents targeting PTP1b. (C) 2016 Elsevier Inc. All rights reserved.