![]() |
个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:计算机应用技术
办公地点:大连理工大学软件学院综合楼225
联系方式:david@dlut.edu.cn
电子邮箱:david@dlut.edu.cn
A hybrid deep computation model for feature learning on aero-engine data: applications to fault detection
点击次数:
论文类型:期刊论文
发表时间:2021-01-10
发表刊物:APPLIED MATHEMATICAL MODELLING
卷号:83
页面范围:487-496
ISSN号:0307-904X
关键字:Feature learning; Deep computation; Gas-path fault detection
摘要:Recently, the safety of aircraft has attracted much attention with some crashes occurring. Gas-path faults, as the most common faults of aircraft, pose a vast challenge for the safety of aircraft because of the complexity of the aero-engine structure. In this article, a hybrid deep computation model is proposed to effectively detect gas-path faults on the basis of the performance data. In detail, to capture the local spatial features of the gas-path performance data, an unfully connected convolutional neural network of one-dimensional kernels is used. Furthermore, to model the temporal patterns hidden in the gas-path faults, a recurrent computation architecture is introduced. Finally, extensive experiments are conducted on real aero-engine data. The results show that the proposed model can outperform the models with which it is compared. (C) 2020 Elsevier Inc. All rights reserved.