Indexed by:期刊论文
Date of Publication:2018-03-01
Journal:COMPUTATIONAL & APPLIED MATHEMATICS
Included Journals:SCIE
Volume:37
Issue:1
Page Number:541-566
ISSN No.:0101-8205
Key Words:Principal-agent model; Piecewise linear contractual function; Homotopy method; Nonconvex programming; Simpson's rule
Abstract:In this paper, the principal-agent bilevel programming problem with integral operator is considered, in which the upper-level object is the agent that maximizes its expected utility with respect to an agreed compensation contract. The constraints are the principal's participation and the agent's incentive compatibility. The latter is a lower-level optimization problem with respect to its private action. To solve an equivalent single-level nonconvex programming problem with integral operator, a modified homotopy method for solving the Karush-Kuhn-Tucker system is proposed. This method requires only an interior point and, not necessarily, a feasible initial approximation for the constraint shifting set. Global convergence is proven under some mild conditions. Numerical experiments were performed by our homotopy method as well as by fmincon in Matlab, LOQO and MINOS. The experiments showed that: designing a piecewise linear contract is much better than designing a piecewise constant contract and only needs to solve a much lower-dimensional optimization problem and hence needs much less computation time; the optimal value of the principal-agent model with designing piecewise linear contract tends to a limitation, while the discrete segments gradually increase; and finally, the proposed modified homotopy method is feasible and effective.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:吉林大学
Degree:Doctoral Degree
School/Department:数学科学学院
Discipline:Computational Mathematics. Financial Mathematics and Actuarial Science
Open time:..
The Last Update Time:..