Indexed by:期刊论文
Date of Publication:2017-05-10
Journal:STRUCTURAL ENGINEERING AND MECHANICS
Included Journals:SCIE、EI
Volume:62
Issue:3
Page Number:303-310
ISSN No.:1225-4568
Key Words:model updating problems; connectivity; positivity; positive semidefiniteness; semidefinite programming
Abstract:The model updating problems, which are to find the optimal approximation to the discrete quadratic model obtained by the finite element method, are critically important to the vibration analysis. In this paper, the structured model updating problem is considered, where the coefficient matrices are required to be symmetric and positive semidefinite, represent the interconnectivity of elements in the physical configuration and minimize the dynamics equations, and furthermore, due to the physical feasibility, the physical parameters should be positive. To the best of our knowledge, the model updating problem involving all these constraints has not been proposed in the existed literature. In this paper, based on the semidefinite programming technique, we design a general-purpose numerical algorithm for solving the structured model updating problems with incomplete measured data and present some numerical results to demonstrate the effectiveness of our method.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:吉林大学
Degree:Doctoral Degree
School/Department:数学科学学院
Discipline:Computational Mathematics. Financial Mathematics and Actuarial Science
Open time:..
The Last Update Time:..