Indexed by:期刊论文
Date of Publication:2012-03-01
Journal:JOURNAL OF COMPUTATIONAL MATHEMATICS
Included Journals:SCIE、CSCD、Scopus
Volume:30
Issue:2
Page Number:177-196
ISSN No.:0254-9409
Key Words:Image restoration; Total variation; Newton method; Homotopy method; Correction and curve tracking
Abstract:The total variation (TV) minimization problem is widely studied in image restoration. Although many alternative methods have been proposed for its solution, the Newton method remains not usable for the primal formulation due to no convergence. A previous study by Chan, Zhou and Chan [15] considered a regularization parameter continuation idea to increase the domain of convergence of the Newton method with some success but no robust parameter selection schemes. In this paper, we consider a homotopy method for the same primal TV formulation and propose to use curve tracking to select the regularization parameter adaptively. It turns out that; this idea helps to improve substantially the previous work in efficiently solving the TV Euler-Lagrange equation. The same idea is also considered for the two other methods as well as the deblurring problem, again with improvements obtained. Numerical experiments show that our new methods are robust; and fast for image restoration, even for images with large noisy-to-signal ratio.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:吉林大学
Degree:Doctoral Degree
School/Department:数学科学学院
Discipline:Computational Mathematics. Financial Mathematics and Actuarial Science
Open time:..
The Last Update Time:..