大连理工大学  登录  English 
刘永新
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 物理学院

学科: 等离子体物理

办公地点: 大连理工大学三束材料改性教育部重点实验室3号楼201室

电子邮箱: yxliu129@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: Yong >> 科学研究 >> 论文成果
Experimental validation and simulation of collisionless bounce-resonance heating in capacitively coupled radio-frequency discharges

点击次数:

论文类型: 期刊论文

发表时间: 2012-06-01

发表刊物: PLASMA SOURCES SCIENCE & TECHNOLOGY

收录刊物: SCIE、EI、Scopus

卷号: 21

期号: 3

ISSN号: 0963-0252

摘要: In low-pressure capacitively coupled radio-frequency discharges, when the driving frequency and discharge gap satisfy certain resonant conditions, the high-energy beam-like electrons generated by fast sheath expansion are bounced back and forth between two sheath edges, during which they can gain energy in each of the collisions with either of the expanding sheaths, and can consequently be heated by the two sheaths coherently. This is the so-called collisionless electron bounce-resonance heating (BRH). The first experimental evidence of BRH was reported by Liu et al (2011 Phys. Rev. Lett. 107 055002). Using a combined measurement of floating double probe and optical-emission spectroscopy, we further demonstrate the effect of BRH on plasma properties, such as plasma density and light emission. It is found that plasma density and excitation are enhanced due to BRH and have a significant dependence on the gap length, pressure, low frequency, high-frequency power and driving frequency, which are presented and discussed in detail. These observations can be explained satisfactorily by a self-consistent 1D3v particle-in-cell/Monte Carlo collision simulation in more detail.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学