王延章

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 电子政务模拟仿真国家地方联合工程研究中心主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:信息与决策技术研究所

电子邮箱:yzwang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于结构自适应模糊神经网络的前列腺癌诊断方法

点击次数:

论文类型:期刊论文

发表时间:2018-05-25

发表刊物:系统工程理论与实践

收录刊物:CSSCI

卷号:38

期号:5

页面范围:1331-1342

ISSN号:1000-6788

关键字:前列腺癌诊断;模糊神经网络;规则提取;粒子群优化算法;可解释性

摘要:前列腺癌是近年来严重危害男性健康的疾病.利用模糊神经网络方法可以实现前列腺癌诊断,并将诊断模型表示为模糊规则集合.针对模糊神经网络所提取规则解释性差的问题,提出结构自适应模糊神经网络方法,通过改进损失函数,在训练中控制相似隶属度函数的合并,实现模糊神经网络模型结构自适应调整,减少模糊规则数量,在保证诊断准确性情况下,提取出容易理解的可解释性规则.同时该方法在模型的训练过程中引入粒子群优化(PSO)算法进行结构和参数学习,有效减少计算量,提高训练效率.最后,使用临床医学科学数据中心提供的前列腺疾病检查数据进行数值实验,验证了所提出方法在前列腺癌诊断和可解释性规则提取中的有效性.