王延章

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 电子政务模拟仿真国家地方联合工程研究中心主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:信息与决策技术研究所

电子邮箱:yzwang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A knowledge-based evolutionary proactive scheduling approach in the presence of machine breakdown and deterioration effect

点击次数:

论文类型:期刊论文

发表时间:2015-12-01

发表刊物:KNOWLEDGE-BASED SYSTEMS

收录刊物:SCIE、EI、Scopus

卷号:90

页面范围:70-80

ISSN号:0950-7051

关键字:Proactive scheduling; Stochastic machine breakdown; Support vector regression; A priori domain knowledge; Robustness; Evolutionary algorithms

摘要:This paper considers proactive scheduling in response to stochastic machine breakdown under deteriorating production environments, where the actual processing time of a job gets longer along with machine's usage and age. It is assumed that a job's processing time is controllable by allocating extra resources and the machine breakdown can be described using a given probability distribution. If a machine breaks down, it needs to be repaired and is no longer available during the repair. To absorb the repair duration, the subsequent unfinished jobs are compressed as much as possible to match up the baseline schedule. This work aims to find the optimal baseline sequence and the resource allocation strategy to minimize the operational cost consisting of the total completion time cost and the resource consumption cost of the baseline schedule, and the rescheduling cost consisting of the match-up time cost and additional resource cost. To this end, an efficient multi-objective evolutionary algorithm based on elitist non-dominated sorting is proposed, in which a support vector regression (SVR) surrogate model is built to replace the time-consuming simulations in evaluating the rescheduling cost, which represents the solution robustness of the baseline schedule. In addition, a priori domain knowledge is embedded in population initialization and offspring generation to further enhance the performance of the algorithm. Comparative results and statistical analysis show that the proposed algorithm is effective in finding non-dominated tradeoff solutions between operational cost and robustness in the presence of machine breakdown and deterioration effect. (C) 2015 Elsevier B.V. All rights reserved.