• 更多栏目

    侯中华

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:日本东京工业大学
    • 学位:博士
    • 所在单位:数学科学学院
    • 学科:基础数学
    • 电子邮箱:zhonghua@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    On the Tangent Bundle of a Hypersurface in a Riemannian Manifold

    点击次数:

    论文类型:期刊论文

    发表时间:2015-07-01

    发表刊物:CHINESE ANNALS OF MATHEMATICS SERIES B

    收录刊物:SCIE、ISTIC、CSCD、Scopus

    卷号:36

    期号:4

    页面范围:579-602

    ISSN号:0252-9599

    关键字:Hypersurfaces; Tangent bundle; Mean curvature vector; Sasaki metric; Almost complex structure; Kahlerian form

    摘要:Let (M-n, g) and (Nn+1, G) be Riemannian manifolds. Let TMn and TNn+1 be the associated tangent bundles. Let f : (M-n, g) -> (Nn+1, G) be an isometrical immersion with g = f* G, F = (f, df) : (T M-n, (g) over bar) -> (TNn+1, G(s)) be the isometrical immersion with (g) over bar = F* G(s) where (df)(x) : TxM -> T-f(x) N for any x is an element of M is the differential map, and Gs be the Sasaki metric on TN induced from G. This paper deals with the geometry of TMn as a submanifold of TNn+1 by the moving frame method. The authors firstly study the extrinsic geometry of TMn in TNn+1. Then the integrability of the induced almost complex structure of TM is discussed.