x7nPVmHc3LR31cs0dZshHdwQ46LGfb4OXIvZC4TcuXvvzQTgM39ccmM3c51r
  • 其他栏目

    侯中华

    • 教授     博士生导师 硕士生导师
    • 性别:男
    • 毕业院校:日本东京工业大学
    • 学位:博士
    • 所在单位:数学科学学院
    • 学科:基础数学
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    Geometry of tangent bundle with Cheeger-Gromoll type metric

    点击次数:

      发布时间:2019-03-09

      论文类型:期刊论文

      发表时间:2013-06-15

      发表刊物:JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

      收录刊物:Scopus、SCIE

      卷号:402

      期号:2

      页面范围:493-504

      ISSN号:0022-247X

      关键字:Tangent bundle; Cheeger-Gromoll type metric; General metric; Kahlerian structure; Ricci curvature; Scalar curvature

      摘要:In this paper we study the structure of tangent bundle TM of a Riemannian manifold (M, g) with a general metric G(a,b). We prove that (TM, G(a,b)) is flat if and only if it is Kahlerian, and (TM, G(a,b)) is Kahlerian if and only if it is almost Kahlerian and M is flat. We also prove that (TM, G(a,b)) Einstein if and only if both (TM, G(a,b)) and (M, g) are flat. Finally, for M to be a space form with constant curvature, we obtain a necessary and sufficient condition for (TM, G(a,b)) having the constant scalar curvature. (C) 2013 Elsevier Inc. All rights reserved.