Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Zhang Chongwei

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:University College London (UCL)
Degree:Doctoral Degree
School/Department:School of Hydraulic Engineering
Business Address:State Key Laboratory of Coastal and Offshore Engineering
Contact Information:chongweizhang@dlut.edu.cn
E-Mail:chongweizhang@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Viscous numerical examination of hydrodynamic forces on a submerged horizontal circular cylinder undergoing forced oscillation

Hits : Praise

Indexed by:Journal Papers

Date of Publication:2019-10-01

Journal:JOURNAL OF HYDRODYNAMICS

Included Journals:EI、SCIE

Volume:31

Issue:5

Page Number:887-899

ISSN No.:1001-6058

Key Words:Submerged horizontal circular cylinder; forced oscillation; hydrodynamic forces; vortex effect

Abstract:As a classical topic, the hydrodynamic forces on a submerged horizontal cylinder undergoing forced oscillation have been widely studied based on potential flow theory. However, the fluid viscosity and the flow rotation may play an important role when the oscillation amplitude of the circular cylinder is large, and large discrepancy will occur between the potential flow simulation and the experimental results. This study focuses on the study of hydrodynamic forces on a submerged horizontal circular cylinder undergoing forced oscillation by means of a viscous fluid numerical wave tank (NWT) model. The accuracy of the numerical model is validated against available experimental data. The comparisons between the hydrodynamic forces on the circular cylinder predicted by the viscous fluid model and the potential flow model are conducted to show the viscous effects on the hydrodynamic forces. By the study on the flow fields, the mechanism of the viscous effects is explained by the vortex effect. The basic reason for the difference between the results based on the viscous fluid theory and the potential flow theory is revealed by analyzing the force components.