个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:德国汉诺威大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 生物与纳米力学
电子邮箱:zhanghw@dlut.edu.cn
Crystallization behaviors and mechanical properties of carbon nanotube encapsulated copper nanowires
点击次数:
论文类型:期刊论文
发表时间:2018-02-15
发表刊物:COMPUTATIONAL MATERIALS SCIENCE
收录刊物:SCIE、EI
卷号:143
页面范围:350-359
ISSN号:0927-0256
关键字:Molecular dynamics simulation; Carbon nanotube encapsulated metal nanowire; Crystallization behavior; Tensile property
摘要:Based on the molecular dynamics (MD) simulation, the crystallization behaviors and tensile mechanical properties of carbon nanotube (CNT) encapsulated copper nanowires are investigated in this paper. The influences of the cooling rate, the wall number of CNT and the cross-sectional diameter are considered. It is found that during the crystallization process the CNT acts as a template to induce the nucleation of copper grains from the surface and the template effect is mainly dominated by the innermost layer of CNT via the van der Waals interaction. CNT encapsulated copper nanowire can be formed after the cooling process and the internal copper nanowire is composed of several circumferential fan-shaped polycrystalline grains separated mostly by radial grain boundaries. The crystallinity increases with the increase of the diameter and the decrease of the cooling rate. Tensile tests show that the strength of the composite structure of the CNT encapsulated copper nanowire is much larger than the corresponding pristine copper nanowire. Moreover, it is found that the strength of the composite structure increases with the decrease of the diameter and the CNT plays a dominant role in strengthening the materials. These findings will shed light on the fabrication and practical application of carbon nanotube encapsulated metal nanowires. (C) 2017 Elsevier B.V. All rights reserved.