个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:德国汉诺威大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 生物与纳米力学
电子邮箱:zhanghw@dlut.edu.cn
Wrapping of a deformable nanoparticle by the cell membrane: Insights into the flexibility-regulated nanoparticle-membrane interaction
点击次数:
论文类型:期刊论文
发表时间:2016-09-21
发表刊物:JOURNAL OF APPLIED PHYSICS
收录刊物:SCIE、EI、Scopus
卷号:120
期号:11
ISSN号:0021-8979
摘要:Although many researches have been conducted on the interaction of the cell membrane with the rigid nanoparticle (NP), relatively little is known about the interaction of the membrane with the deformable NP, which is a promising kind of drug delivery carrier. In this paper, we investigate the wrapping of a deformable NP by the membrane, with particular attention paid to the location of the NP. Phase diagrams with respect to the normalized NP-membrane adhesion strength and the bending stiffness ratio between the NP and membrane are presented. The results show that the NP is easier to be fully wrapped but harder to be shallowly wrapped when the NP locates outside than inside the vesicle. For the system with an outside NP, there are three distinct stages separated by two critical bending stiffness ratios as the NP becomes softer. Moreover, the critical normalized adhesion strength required for a deformable NP to be fully wrapped is the same as that for a rigid NP when the bending stiffness ratio is higher than a critical value, which is different from the wrapping behavior by an initially flat membrane. In addition, a larger vesicle size facilitates the full wrapping configuration when the NP is inside, whereas it prohibits it when the NP is outside. These results are consistent with the previous research and can provide guidelines for the design of drug delivery systems based on the flexibility-tunable NPs. Published by AIP Publishing.