张洪武

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:德国汉诺威大学

学位:博士

所在单位:力学与航空航天学院

学科:工程力学. 计算力学. 生物与纳米力学

电子邮箱:zhanghw@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistent formulation

点击次数:

论文类型:期刊论文

发表时间:2014-10-01

发表刊物:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

收录刊物:SCIE、EI、Scopus

卷号:280

页面范围:84-116

ISSN号:0045-7825

关键字:Meshfree/Meshless; EFG; Three-dimensional; Variational principle; Integration

摘要:The formulation of three-dimensional element-free Galerkin (EFG) method based on the Hu-Washizu three-field variational principle is described. The orthogonality condition between stress and strain difference is satisfied by correcting the derivatives of the nodal shape functions. This leads to a variationally consistent formulation which has a similar form as the formulation of standard Galerkin weak form. Based on this formulation, an integration scheme which employs only four cubature points in each background tetrahedral element (cell) is rationally developed for three-dimensional EFG with quadratic approximation. The consistency of the corrected nodal derivatives and the satisfaction of patch test conditions for the developed integration scheme are theoretically proved. Extension of the proposed method to small strain elastoplasticity is also presented. The proposed method can exactly pass quadratic patch test, that is, quadratic exactness is achieved, and thus it is named as quadratically consistent 4-point (QC4) integration method. In contrast, EFG with standard tetrahedral cubature and the existing linearly consistent 1-point (LC1) integration fail to exactly pass quadratic patch test. Numerical results of elastic examples demonstrate the superiority of the proposed method in accuracy, convergence, efficiency and stability. The capability of the proposed QC4 scheme in solving elastoplastic problems is also demonstrated by numerical examples. (C) 2014 Elsevier B.V. All rights reserved.