![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:德国汉诺威大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 生物与纳米力学
电子邮箱:zhanghw@dlut.edu.cn
Second-order accurate derivatives and integration schemes for meshfree methods
点击次数:
论文类型:期刊论文
发表时间:2012-10-26
发表刊物:INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
收录刊物:SCIE、EI、Scopus
卷号:92
期号:4
页面范围:399-424
ISSN号:0029-5981
关键字:meshfree; integration; Galerkin; finite element method; elasticity; solids
摘要:The consistency condition for the nodal derivatives in traditional meshfree Galerkin methods is only the differentiation of the approximation consistency (DAC). One missing part is the consistency between a nodal shape function and its derivatives in terms of the divergence theorem in numerical forms. In this paper, a consistency framework for the meshfree nodal derivatives including the DAC and the discrete divergence consistency (DDC) is proposed. The summation of the linear DDC over the whole computational domain leads to the so-called integration constraint in the literature. A three-point integration scheme using background triangle elements is developed, in which the corrected derivatives are computed by the satisfaction of the quadratic DDC. We prove that such smoothed derivatives also meet the quadratic DAC, and therefore, the proposed scheme possesses the quadratic consistency that leads to its name QC3. Numerical results show that QC3 is the only method that can pass both the linear and the quadratic patch tests and achieves the best performances for all the four examples in terms of stability, convergence, accuracy, and efficiency among all the tested methods. Particularly, it shows a huge improvement for the existing linearly consistent one-point integration method in some examples. Copyright (c) 2012 John Wiley & Sons, Ltd.