![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:德国汉诺威大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 生物与纳米力学
电子邮箱:zhanghw@dlut.edu.cn
Scale dependence of direct shear tests
点击次数:
论文类型:期刊论文
发表时间:2009-12-01
发表刊物:CHINESE SCIENCE BULLETIN
收录刊物:SCIE、Scopus
卷号:54
期号:23
页面范围:4337-4348
ISSN号:1001-6538
关键字:granular material; direct shear test; scaling effect
摘要:Direct shear test has been widely used to measure the shear strength of soils and other particulate materials in industry because of its simplicity. However, the results can be dependent on the specimen size. The ASTM (American Society for Testing and Materials) publications suggest that for testing soils the shear box should be at least ten times the diameter of the largest particle and the height of the box should be no more than half of its diameter. These guidelines are empirically based. A series of two-dimensional numerical direct shear tests are performed to investigate this scaling effect. By analyzing the bulk friction, particle translation and rotation, percentage of sliding, average volume (area) and shear strain and the evolution of the shear band, we find that the traditional guidelines for direct shear tests are questionable. Scaling dependency of bulk friction on the property of granular materials is clearly present. Our current analysis points out that the scaling effects can vary significantly depending on the particle properties other than their sizes. Of all the parameters we observed, particle rotation appears to have a decisive correlation with the bulk friction. Formation of a shear band is universal. As the shearing progresses, particle rotation begins to concentrate near the shear plane. By defining the width of a shear band as the standard deviation of the distribution of translational gradient or the standard deviation of the distribution of particle rotation, quantitative evolutions of shear band are presented. Both measures of the shear band width dropped rapidly during pre-failure stage. After peak stress both measures begin to approach steady state as the bulk friction stabilizes to the residual stage. These observations suggest that structure formation inside the shear band controls the scaling effect.