张洪武

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:德国汉诺威大学

学位:博士

所在单位:力学与航空航天学院

学科:工程力学. 计算力学. 生物与纳米力学

电子邮箱:zhanghw@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions

点击次数:

论文类型:期刊论文

发表时间:2003-01-01

发表刊物:INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES

收录刊物:SCIE

卷号:40

期号:2

页面范围:493-510

ISSN号:0020-7683

关键字:stress; crack; eigenvalues

摘要:This paper presents a new method for the stress singularity analysis near the crack corners of a multi-material junctions. The stress singularities near the crack corners of multi-dissimilar isotropic elastic material junctions are studied analytically in terms of the methods developed in Hamiltonian system. The governing equations of plane elasticity in a sectorial domain are derived in Hamiltonian form via variable substitution and variational principle respectively. Both of the methods of global state variable separation and symplectic eigenfunction expansion are used to find the analytical solution of the problem. The relationships among the state vectors in different material spaces are obtained by means of coordinate transformation and consistent conditions between the two adjacent domains. The expression of the original problem is thus changed into a new form where the solutions of symplectic generalized eigenvalues and eigenvectors are needed. The closed form of expressions is established for the stress singularity analysis near the corner with arbitrary vertex angles. Numerical results are presented with several chosen angles and multi-material constants. To show the potential of the new method proposed, a semi-analytical finite element is furthermore developed for the numerical analysis of crack problems. (C) 2002 Elsevier Science Ltd. All rights reserved.