个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Vice Dean of Graduate School
其他任职:建筑能源研究所所长
性别:男
毕业院校:哈尔滨建筑大学
学位:博士
所在单位:土木工程系
学科:供热、供燃气、通风及空调工程. 控制理论与控制工程. 建筑学
办公地点:大连市凌工路2号大连理工大学建设工程学院3号楼601室
联系方式:0411-84706260
电子邮箱:zjldlut@dlut.edu.cn
Performance enhancement of filled-type solar collector with U-tube
点击次数:
论文类型:期刊论文
发表时间:2015-03-01
发表刊物:JOURNAL OF CENTRAL SOUTH UNIVERSITY
收录刊物:SCIE、EI、Scopus
卷号:22
期号:3
页面范围:1124-1131
ISSN号:2095-2899
关键字:performance enhancement; filled-type; evacuated tube; U-tube
摘要:In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and heat loss coefficient. The results of analysis show that the heat transfer between pipes in evacuated tube is one of the most important factors, which can lead to the decrease of the outlet temperature of working fluid. In order to eliminate the negative influence of the heat transfer between pipes, the hollow filled-type evacuated tube with U-tube (HUFET) was developed, and the heat transfer characteristics of HUFET were analyzed by theoretical and experimental studies. The results show that the thermal resistances decrease with the increase of the thermal conductivity of filled layer. When the thermal conductivity is over 10 W/(m.K), the change of thermal resistances is very little. Furthermore, the larger the thermal conductivity of filled layer, the less the rate of the energy transfer between the two pipes to the total energy transfer, which is between the absorber tube and the working fluid. There is a little difference between the efficiencies of HUFET and UFET, with the efficiency of HUFET 2.4% higher than that of UFET. Meanwhile, the validation of the model developed was confirmed by the experiment.