Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Lei Zhang

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:Tsinghua University
Degree:Doctoral Degree
School/Department:School of Chemical Engineering
Discipline:Chemical Engineering
Business Address:西部校区化工实验楼D408
E-Mail:keleiz@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Machine learning-based atom contribution method for the prediction of surface charge density profiles and solvent design

Hits : Praise

Indexed by:期刊论文

Date of Publication:2021-03-05

Journal:AICHE JOURNAL

Volume:67

Issue:2

ISSN No.:0001-1541

Key Words:atom contribution; computer-aided molecular design; decomposition-based algorithm; machine learning; surface charge density profiles (sigma-profiles)

Abstract:Solvents are widely used in chemical processes. The use of efficient model-based solvent selection techniques is an option worth considering for rapid identification of candidates with better economic, environment and human health properties. In this paper, an optimization-based MLAC-CAMD framework is established for solvent design, where a novel machine learning-based atom contribution method is developed to predict molecular surface charge density profiles (sigma-profiles). In this method, weighted atom-centered symmetry functions are associated with atomic sigma-profiles using a high-dimensional neural network model, successfully leading to a higher prediction accuracy in molecular sigma-profiles and better isomer identifications compared with group contribution methods. The new method is integrated with the computer-aided molecular design technique by formulating and solving a mixed-integer nonlinear programming model, where model complexities are managed with a decomposition-based strategy. Finally, two case studies involving crystallization and reaction are presented to highlight the wide applicability and effectiveness of the MLAC-CAMD framework.