张绍武

个人信息Personal Information

教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术

办公地点:大黑楼B807

电子邮箱:zhangsw@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

微信息进程与流量检测指令分布下的倾向性检测模型

点击次数:

论文类型:期刊论文

发表时间:2016-09-10

发表刊物:云南大学学报(自然科学版)

收录刊物:PKU

卷号:38

期号:5

页面范围:714-723

ISSN号:0258-7971

关键字:微信息;蜜罐;软件定义网络;虚拟交换机;主题识别

摘要:微博、微信等自媒体服务兴盛,危险预测成为微信息舆情管理的难题之一.基于SDN和MapReduce概念架构,结合虚拟蜜网技术,设计舆情倾向性检测模型;针对前端蜜罐机,设制舆情监测任务指令集,布局检测策略,完成分布式流量检测任务;通过虚拟嫌疑主题,针对大数据稀疏性困难,设计用户敏感行为特征集,实现微信息圈危害兴趣倾向的先验算法;最后对算法模型进行实践检验.实验表明,基于流量级和进程级关联的倾向性主题检测,检验效率较高,针对性强,能获得较好的监测效果,能为微信息舆情的主动性防范和舆情调节控制,提供重要的支持,所以,我们提出微信息进程与流量检测指令分布的倾向甘检测模型,以满足细粒度舆情监测与防御的需要.