张绍武

个人信息Personal Information

教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术

办公地点:大黑楼B807

电子邮箱:zhangsw@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Incorporating Sample Filtering into Subject-Based Ensemble Model for Cross-Domain Sentiment Classification

点击次数:

论文类型:会议论文

发表时间:2015-11-13

收录刊物:EI、CPCI-S、Scopus

卷号:9427

页面范围:116-127

关键字:Cross-domain; SS-LDA; Sentiment analysis

摘要:Recently, cross-domain sentiment classification is becoming popular owing to its potential applications, such as marketing et al. It seeks to generalize a model, which is trained on a source domain and using it to label samples in the target domain. However, the source and target distributions differ substantially in many cases. To address this issue, we propose a comprehensive model, which takes sample filtering and labeling adaptation into account simultaneously, named joint Sample Filtering with Subject-based Ensemble Model (SF-SE). Firstly, a sentence level Latent Dirichlet Allocation (LDA) model, which incorporates topic and sentiment together (SS-LDA) is introduced. Under this model, a high-quality training dataset is constructed in an unsupervised way. Secondly, inspired by the distribution variance of domain-independent and domain-specific features related to the subject of a sentence, we introduce a Subject-based Ensemble model to efficiently improve the classification performance. Experimental results show that the proposed model is effective for cross-domain sentiment classification.