![]() |
个人信息Personal Information
教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术
办公地点:大黑楼B807
电子邮箱:zhangsw@dlut.edu.cn
Fuzzy ELM for classification based on feature space
点击次数:
论文类型:期刊论文
发表时间:2021-01-10
发表刊物:MULTIMEDIA TOOLS AND APPLICATIONS
卷号:79
期号:37-38
页面范围:27439-27464
ISSN号:1380-7501
关键字:Extreme learning machine; Classification; Membership degree; Feature mapping space
摘要:As a competitive machine learning algorithm, extreme learning machine (ELM), with its simple theory and easy implementation, has been widely used in the field of pattern accuracy. Recently, researchers have proposed related research algorithms to accommodate noise and outlier data. With a proper fuzzy membership function, a fuzzy ELM can effectively reduce the effects of outliers when solving the classification problem. However, how to apply ELM for learning and accuracy in the presence of noise is still an important research topic.A novel fuzzy ELM (ANFELM) technique is proposed in this paper. In the algorithm, the membership degree of the sample is calculated in a feature mapping space instead of the data input space. The algorithm provides good performance in reducing the effects of outliers and significantly improves classification accuracy and generalization. Experiments on UCI datasets and textual datasets show that the proposed algorithm significantly improves the classification capability of ELM and is superior to other algorithms.