个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理. 膜科学与技术
联系方式:0411-84986107
电子邮箱:zhangshh@dlut.edu.cn
Effect of Chemical Structure on the Performance of Sulfonated Poly(aryl ether sulfone) Composite Nanofiltration Membranes
点击次数:
论文类型:期刊论文
发表时间:2019-01-01
发表刊物:MEMBRANES
收录刊物:PubMed、SCIE、EI
卷号:9
期号:1
关键字:sulfonated poly(aryl ether sulfone); phthalazinone; structure; composite membranes; nanofiltration
摘要:This paper discusses the effect of the chemical structure of sulfonated poly(aryl ether sulfone) on the performance of composite nanofiltration membranes. The composite nanofiltration membranes were fabricated by coating sulfonated poly(aryl ether sulfone) solution onto the top surface of poly(phthalazinone ether sulfone ketone) support membranes. Three kinds of sulfonated poly(aryl ether sulfone)s with different amounts of phthalazinone moieties, namely, sulfonated poly(phthalazinone ether sulfone) (SPPES), sulfonated poly(phthalazinone biphenyl ether sulfone) (SPPBES), and sulfonated poly(phthalazinone hydroquinone ether sulfone)s (SPPHES), were used as coating materials. The solvents used in preparing the coating solution were investigated and optimized. The separation properties, thermal stability, and chlorine resistance of composite membranes were determined. The structures and morphologies of membranes were characterized with FTIR and SEM, respectively. The membrane prepared from SPPES with more phthalazinone moiety groups showed high water flux and salt rejection. The salt rejection of composite membranes followed the order SPPES > SPPHES > SPPBES. The rejection of the three composite membranes decreased slightly with the solution temperature rising from 20 to 90 degrees C, while the composite membrane with SPPES as the active layer showed a higher increase in flux than others. The results indicate that SPPES composite membranes show better thermal stability than others.