大连理工大学  登录  English 
张宪超
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 中国科技大学

学位: 博士

所在单位: 软件学院、国际信息与软件学院

学科: 计算机应用技术. 软件工程

电子邮箱: xczhang@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Constraint Based Subspace Clustering for High Dimensional Uncertain Data

点击次数:

论文类型: 会议论文

发表时间: 2016-01-01

收录刊物: CPCI-S

卷号: 9652

页面范围: 271-282

摘要: Both uncertain data and high-dimensional data pose huge challenges to traditional clustering algorithms. It is even more challenging for clustering high dimensional uncertain data and there are few such algorithms. In this paper, based on the classical FINDIT subspace clustering algorithm for high dimensional data, we propose a constraint based semi-supervised subspace clustering algorithm for high dimensional uncertain data, UFINDIT. We extend both the distance functions and dimension voting rules of FINDIT to deal with high dimensional uncertain data. Since the soundness criteria of FINDIT fails for uncertain data, we introduce constraints to solve the problem. We also use the constraints to improve FINDIT in eliminating parameters' effect on the process of merging medoids. Furthermore, we propose some methods such as sampling to get an more efficient algorithm. Experimental results on synthetic and real data sets show that our proposed UFINDIT algorithm outperforms the existing subspace clustering algorithm for uncertain data.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学