教授 博士生导师 硕士生导师
性别: 男
毕业院校: 中国科技大学
学位: 博士
所在单位: 软件学院、国际信息与软件学院
学科: 计算机应用技术. 软件工程
电子邮箱: xczhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 会议论文
发表时间: 2015-05-19
收录刊物: EI、CPCI-S、Scopus
卷号: 9074
页面范围: 51-70
摘要: The User Identity Resolution (UIR) problem is concerned with recognizing the same person with multiple virtual profiles in different online social networks (OSNs). Most of the existing methods focus only on the similarity of profile attributes or simply combine the profile attributes and linkages of friends. In this paper, we propose a novel Greedy-based Cross-Matching (GCM) algorithm, which combines profile attributes with linkage information of both friend and non-friend users. In the GCM algorithm, we first propose a greedy strategy for detecting candidate matching users using Profile Attributes Similarity (PAS) and User Surrounding Score (USS). We then define the User Matching Score (UMS), which combines PAS with network structures, to greedily determine matched users for the candidate ones. Finally, we utilize a novel cross-matching process inspired by Stable Marriage Problem (SMP) to further improve the matching accuracy. Experiments on Twitter and Facebook demonstrate that our method significantly improves the matching performance and outperforms the state-of-the-art algorithms.