教授 博士生导师 硕士生导师
性别: 男
毕业院校: 中国科技大学
学位: 博士
所在单位: 软件学院、国际信息与软件学院
学科: 计算机应用技术. 软件工程
电子邮箱: xczhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 会议论文
发表时间: 2008-12-12
收录刊物: EI、Scopus
卷号: 1
页面范围: 690-693
摘要: With the growth of publishing scientific literature on the World Wide Web, there is a great demand for clustering online scientific literature by using the citation patterns. A scientific community in the citation graph represents related papers on a single topic. In this paper we improve the random walk graph clustering algorithm to find scientific communities by using correlation coefficient in the citation graph as the similarity metric. Our experiment results show that the approach performs better than the original random walk graph clustering method. © 2008 IEEE.