教授 博士生导师 硕士生导师
性别: 男
毕业院校: 中国科技大学
学位: 博士
所在单位: 软件学院、国际信息与软件学院
学科: 计算机应用技术. 软件工程
电子邮箱: xczhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 会议论文
发表时间: 2016-04-19
收录刊物: EI
卷号: 9650
页面范围: 19-30
摘要: Clustering analysis of multi-typed objects in heterogeneous information network (HINs) is an important and challenging problem. Nonnegative Matrix Tri-Factorization (NMTF) is a popular bi-clustering algorithm on document data and relational data. However, few algorithms utilize this method for clustering in HINs. In this paper, we propose a novel bi-clustering algorithm, BMFClus, for HIN based on NMTF. BMFClus not only simultaneously generates clusters for two types of objects but also takes rich heterogeneous information into account by using a similarity regularization. Experiments on both synthetic and real-world datasets demonstrate that BMFClus outperforms the stateof- the-art methods. © Springer International Publishing Switzerland 2016.