大连理工大学  登录  English 
张宪超
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 中国科技大学

学位: 博士

所在单位: 软件学院、国际信息与软件学院

学科: 计算机应用技术. 软件工程

电子邮箱: xczhang@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Heterogeneous information networks bi-clustering with similarity regularization

点击次数:

论文类型: 会议论文

发表时间: 2016-04-19

收录刊物: EI

卷号: 9650

页面范围: 19-30

摘要: Clustering analysis of multi-typed objects in heterogeneous information network (HINs) is an important and challenging problem. Nonnegative Matrix Tri-Factorization (NMTF) is a popular bi-clustering algorithm on document data and relational data. However, few algorithms utilize this method for clustering in HINs. In this paper, we propose a novel bi-clustering algorithm, BMFClus, for HIN based on NMTF. BMFClus not only simultaneously generates clusters for two types of objects but also takes rich heterogeneous information into account by using a similarity regularization. Experiments on both synthetic and real-world datasets demonstrate that BMFClus outperforms the stateof- the-art methods. © Springer International Publishing Switzerland 2016.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学