
教授 博士生导师 硕士生导师
性别:男
毕业院校:中国科技大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:计算机应用技术
软件工程
电子邮箱:
开通时间: ..
最后更新时间:..
点击次数:
发布时间:2019-03-11
论文类型:会议论文
发表时间:2016-04-19
收录刊物:EI
卷号:9650
页面范围:19-30
摘要:Clustering analysis of multi-typed objects in heterogeneous information network (HINs) is an important and challenging problem. Nonnegative Matrix Tri-Factorization (NMTF) is a popular bi-clustering algorithm on document data and relational data. However, few algorithms utilize this method for clustering in HINs. In this paper, we propose a novel bi-clustering algorithm, BMFClus, for HIN based on NMTF. BMFClus not only simultaneously generates clusters for two types of objects but also takes rich heterogeneous information into account by using a similarity regularization. Experiments on both synthetic and real-world datasets demonstrate that BMFClus outperforms the stateof- the-art methods. © Springer International Publishing Switzerland 2016.