大连理工大学  登录  English 
张宪超
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 中国科技大学

学位: 博士

所在单位: 软件学院、国际信息与软件学院

学科: 计算机应用技术. 软件工程

电子邮箱: xczhang@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
A creditable subspace labeling method based on D-S evidence theory

点击次数:

论文类型: 会议论文

发表时间: 2008-05-20

收录刊物: EI、CPCI-S

卷号: 5012

页面范围: 839-848

摘要: Due to inherent sparse, noise and nearly zero difference characteristics of high dimensional data sets, traditional clustering methods fails to detect meaningful clusters in them. Subspace clustering attempts to find the true distribution inherent to the subsets with original attributes. However, which subspace contains the true clustering result is usually uncertain. From this point of view, subspace clustering can be regarded as an uncertain discursion problem. In this paper, we firstly develop the criterion to evaluate creditable subspaces which contain the meaningful clustering results, and then propose a creditable subspace labeling method (CSL) based on D-S evidence theory. The creditable subspaces of the original data space can be found by iteratively executing the algorithm CSL. Once the creditable subspaces are got, the true clustering results can be found using a traditional clustering algorithm on each creditable subspace. Experiments show that CSL can detect the actual creditable subspace with the original attribute. In this way, a novel approach of clustering problems using traditional clustering algorithms to deal with high dimension data sets is proposed.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学