教授 博士生导师 硕士生导师
性别: 男
毕业院校: 中国科技大学
学位: 博士
所在单位: 软件学院、国际信息与软件学院
学科: 计算机应用技术. 软件工程
电子邮箱: xczhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 会议论文
发表时间: 2007-05-22
收录刊物: EI、CPCI-S
卷号: 4426
页面范围: 367-+
关键字: data mining; clustering analysis; mechanics; minimum potential; energy principle
摘要: Existing clustering algorithms use distance, density or concept as clustering criterion. These criterions can not exactly reflect relationships among multiple objects, so that the clustering qualities are not satisfying. In this paper, a mechanics based clustering algorithm is proposed. The algorithm regards data objects as particles with masses and uses gravitation to depict relationships among data objects. Clustering is executed according to displacements of data objects caused by gravitation, and the result is optimized subjecting to Minimum Potential Energy Principle. The superiority of the algorithm is that the relationships among multiple objects are exactly reflected by gravitation, and the multiple relationships can be converted to the single ones due to force composition, so that the computation can be executed efficiently. Experiments indicate that qualities of the clustering results deduced by this algorithm are better than those of classic algorithms such as CURE and K-Means.