教授 博士生导师 硕士生导师
性别: 男
毕业院校: 中国科技大学
学位: 博士
所在单位: 软件学院、国际信息与软件学院
学科: 计算机应用技术. 软件工程
电子邮箱: xczhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 会议论文
发表时间: 2015-01-01
收录刊物: EI、CPCI-S、Scopus
卷号: 2015-January
页面范围: 4055-4061
摘要: Multi-task clustering and multi-view clustering have severally found wide applications and received much attention in recent years. Nevertheless, there are many clustering problems that involve both multi-task clustering and multi-view clustering, i.e., the tasks are closely related and each task can be analyzed from multiple views. In this paper, for non-negative data (e.g., documents), we introduce a multi-task multi-view clustering (MTMVC) framework which integrates within-view-task clustering, multi-view relationship learning and multi-task relationship learning. We then propose a specific algorithm to optimize the MT-MVC framework. Experimental results show the superiority of the proposed algorithm over either multi-task clustering algorithms or multi-view clustering algorithms for multi-task clustering of multiview data.