张扬

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:物理学院

学科:光学工程. 光学. 测试计量技术及仪器

办公地点:物理系326房间

联系方式:yangzhang@dlut.edu.cn

电子邮箱:yangzhang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating

点击次数:

论文类型:期刊论文

发表时间:2017-10-02

发表刊物:OPTICS EXPRESS

收录刊物:Scopus、SCIE、EI

卷号:25

期号:20

页面范围:24521-24530

ISSN号:1094-4087

摘要:In this work, a novel and simple optical fiber hot-wire anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is proposed and demonstrated. For the hot-wire wind speed sensor design, TFBG is an ideal in-fiber sensing structure due to its unique features. It is utilized as both light coupling and temperature sensing element without using any geometry-modified or uncommon fiber, which simplifies the sensor structure. To further enhance the thermal conversion capability, SWCNTs are coated on the surface of the TFBG instead of traditional metallic materials, which have excellent thermal characteristics. When a laser light is pumped into the sensor, the pump light propagating in the core will be easily coupled into cladding of the fiber via the TFBG and strongly absorbed by the SWCNTs thin film. This absorption acts like a hot-wire raising the local temperature of the fiber, which is accurately detected by the TFBG resonance shift. In the experiments, the sensor's performances were investigated and controlled by adjusting the inherent angle of the TFBG, the thickness of SWCNTs film, and the input power of the pump laser. It was demonstrated that the developed anemometer exhibited significant light absorption efficiency up to 93%, and the maximum temperature of the local area on the fiber was heated up to 146.1 degrees C under the relatively low pump power of 97.76 mW. The sensitivity of -0.3667 nm/(m/s) at wind speed of 1.0 m/s was measured with the selected 12 degrees TFBG and 1.6 mu m film. (C) 2017 Optical Society of America