教授 博士生导师 硕士生导师
任职 : 三束材料改性教育部重点实验室主任
性别: 男
毕业院校: 南京大学
学位: 博士
所在单位: 物理学院
学科: 凝聚态物理
电子邮箱: zhaojj@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2018-02-01
发表刊物: ACS CATALYSIS
收录刊物: ESI热点论文、SCIE、EI、ESI高被引论文
卷号: 8
期号: 2
页面范围: 1186-1191
ISSN号: 2155-5435
关键字: nitrogen fixation; ammonia synthesis; electrocatalysis; N-doped porous carbon; heterogeneous catalysis
摘要: Ammonia has been used in important areas such as agriculture and clean energy. Its synthesis from the electrochemical reduction of N-2 is an attractive alternative to the industrial method that requires high temperature and pressure. Currently, electrochemical N-2 fixation has suffered from slow kinetics due to the difficulty of N-2 adsorption and N N cleavage. Here, N-doped porous carbon (NPC) is reported as a cost-effective electrocatalyst for ammonia synthesis from electrocatalytic N-2 reduction under ambient conditions, where its N content and species were tuned to enhance N-2 chemical adsorption and N N cleavage. The resulting NPC was effective for fixing N-2 to ammonia with a high ammonia production rate (1.40 mmol g(-1) h(-1) at-0.9 V vs RHE). Experiments combined with density functional theory calculations revealed pyridinic and pyrrolic N were active sites for ammonia synthesis and their contents were crucial for promoting ammonia production on NPC. The energy-favorable pathway for ammonia synthesis was *N N -> *NH=NH -> *NH2-NH2 -> 2NH(3).