教授 博士生导师 硕士生导师
任职 : 三束材料改性教育部重点实验室主任
性别: 男
毕业院校: 南京大学
学位: 博士
所在单位: 物理学院
学科: 凝聚态物理
电子邮箱: zhaojj@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2017-06-01
发表刊物: NANO RESEARCH
收录刊物: SCIE、EI、Scopus
卷号: 10
期号: 6
页面范围: 1972-1979
ISSN号: 1998-0124
关键字: spintronics; Dirac half metal; YN2 monolayer; ferromagnetism
摘要: In spintronics, it is highly desirable to find new materials that can simultaneously possess complete spin-polarization, high-speed conduction electrons, large Curie temperature, and robust ferromagnetic ground states. Using first-principles calculations, we demonstrate that the stable YN2 monolayer with octahedral coordination is a novel p-state Dirac half metal (DHM), which not only has a fully spin-polarized Dirac state, but also the highest Fermi velocity (3.74 x 10(5) m/s) of the DHMs reported to date. In addition, its half-metallic gap of 1.53 eV is large enough to prevent the spin-flip transition. Because of the strong nonlocal p orbitals of N atoms (N-p) direct exchange interaction, the Curie temperature reaches over 332 K. Moreover, its ferromagnetic ground state can be well preserved under carrier doping or external strain. Therefore, the YN2 monolayer is a promising DHM for high-speed spintronic devices and would lead to new opportunities in designing other p-state DHMs.