大连理工大学  登录  English 
赵纪军
点赞:

教授   博士生导师   硕士生导师

任职 : 三束材料改性教育部重点实验室主任

性别: 男

毕业院校: 南京大学

学位: 博士

所在单位: 物理学院

学科: 凝聚态物理

电子邮箱: zhaojj@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

Ionic and superionic phases in ammonia dihydrate NH3 center dot 2H(2)O under high pressure

点击次数:

论文类型: 期刊论文

发表时间: 2017-04-06

发表刊物: PHYSICAL REVIEW B

收录刊物: SCIE

卷号: 95

期号: 14

ISSN号: 2469-9950

摘要: Water and ammonia have long been seen as themain species of extraterrestrial space, especially on solar giants, moons, comets, and numerous extrasolar planets. The phases formed by their admixtures under temperature and pressure conditions of the giant planets are important for understanding many observable properties (gravitational moments, atmospheric composition, and magnetic field). Here we employ a Monte Carlo packing algorithm combined with first-principles calculations to search the low-energy crystal structures of ammonia dihydrate (ADH). At high pressure above 11.81 GPa, we predict an unusual ionic phase (tetragonal, I4(1)cd) consisting of three alternating layers of H2O, NH4+, and OH-. The occurrence of ionic phase is attributed to the NH4+ and OH-electrostatic interaction induced volume reduction, which lowers the energy barrier of molecular to ionic phase transition. Analysis of proton transfer under pressure further supports the transformation mechanism between molecular and ionic phase. According to the mobility of hydrogen atoms from ab initio molecular dynamics, this ionic crystal will transform into a superionic phase under high temperature and high pressure. The existence of ionic or superionic ADH may have important implications for understanding the interiors of Neptune, Uranus, and many extrasolar planets.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学