
教授 博士生导师 硕士生导师
其他任职:三束材料改性教育部重点实验室主任
性别:男
毕业院校:南京大学
学位:博士
所在单位:物理学院
学科:凝聚态物理
电子邮箱:
开通时间: ..
最后更新时间:..
点击次数:
发布时间:2019-03-12
论文类型:期刊论文
发表时间:2017-04-01
发表刊物:NUCLEAR ENGINEERING AND TECHNOLOGY
收录刊物:SCIE
卷号:49
期号:3
页面范围:569-575
ISSN号:1738-5733
关键字:High Temperature; Irradiation; Multiscale Simulation; Yield Strength
摘要:One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7-9 wt.%Cr) RAFM steels in a condition characterized by 0.1-5 dpa (or 0 dpa) and a temperature range of 25-500 degrees C. Copyright (C) 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.