教授 博士生导师 硕士生导师
任职 : 三束材料改性教育部重点实验室主任
性别: 男
毕业院校: 南京大学
学位: 博士
所在单位: 物理学院
学科: 凝聚态物理
电子邮箱: zhaojj@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2016-03-14
发表刊物: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
收录刊物: SCIE、PubMed
卷号: 18
期号: 10
页面范围: 7156-7162
ISSN号: 1463-9076
摘要: The indirect bandgap character of silicon greatly limits its applications in electronic or optoelectronic devices, and direct bandgaps are highly desirable in all silicon allotropes. The successful synthesis of ultrathin or even monolayer silicon films experimentally has opened new opportunities to further modulate the electronic structure of silicon through external modulation. In this work, strain or electric field effects on the electronic structure of ultrathin silicon film (USF) are systematically explored. The results demonstrate that all USFs are indirect band-gap semiconductors; interestingly, tensile strain or electric field efficiently tunes the USFs into direct band gap semiconductors. The indirect to direct band gap transition in the USFs not only extends their light adsorption spectra into the visible light region but also greatly enhances the adsorption intensity. Because of this, strained USFs have great potential to be used as a high-performance photovoltaic material. Furthermore, the high stability, moderate band-gap and proper band edge positions demonstrate that monolayer and bilayer USFs can also be used as photocatalysts for water splitting.