教授 博士生导师 硕士生导师
任职 : 三束材料改性教育部重点实验室主任
性别: 男
毕业院校: 南京大学
学位: 博士
所在单位: 物理学院
学科: 凝聚态物理
电子邮箱: zhaojj@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2012-08-21
发表刊物: APPLIED CATALYSIS B-ENVIRONMENTAL
收录刊物: SCIE、EI、Scopus
卷号: 125
页面范围: 538-545
ISSN号: 0926-3373
关键字: Photocatalysis; Sunlight; Ag/Ag3PO4; Calculation
摘要: Sunlight-driven Ag/Ag3PO4 plasmonic nanocatalysts have been successfully prepared using an in situ ethylene glycol reduction method. The photocatalysts showed strong photocatalytic activity for decomposition of RhB and MB dyes under visible light irradiation (lambda > 420 nm). The excellent photocatalytic performance of Ag/Ag3PO4 came from the sensitivity of Ag3PO4 and the high separation efficiency of electron-hole pairs, which resulted in a large number of holes participating in the photocatalytic oxidation process. The results of density function theory calculation revealed that the visible-light absorption band in the Ag3PO4 catalyst is attributed to the band transition from the hybrid orbital of O 2p and Ag 4d to the Ag 5 s and 5p orbital. The generation of active species in the photocatalytic system was evaluated using the fluorescence (FL) and electron spin resonance (ESR) techniques as well as in situ capture of active species by t-butanol and EDTA. The results indicated that the free hydroxyl radicals were not the major active oxidizing species in the photocatalytic process. The photocatalytic reaction process of the pollutants was mainly governed by the direct oxidation by the holes. (C) 2012 Elsevier B.V. All rights reserved.