
教授 博士生导师 硕士生导师
其他任职:三束材料改性教育部重点实验室主任
性别:男
毕业院校:南京大学
学位:博士
所在单位:物理学院
学科:凝聚态物理
电子邮箱:
开通时间: ..
最后更新时间:..
点击次数:
发布时间:2019-03-09
论文类型:期刊论文
发表时间:2011-10-01
发表刊物:THEORETICAL CHEMISTRY ACCOUNTS
收录刊物:SCIE、Scopus
卷号:130
期号:2-3
页面范围:341-352
ISSN号:1432-881X
关键字:Water cluster; Density functional theory; MP2; CCSD(T); Basis set; Structures; Relative energies; Stabilization energy; Dipole moment; Vibrational frequencies
摘要:The geometric structures, stabilization energies, dipole moments, and vibrational frequencies of the neutral water clusters (H2O) (n) , with n = 1-10, were investigated using density functional theory along with a variety of exchange-correlation functionals (LDA with SVWN5 parameterization, GGA with BLYP, PW91, PBE, B3LYP, X3LYP, PBE0, PBE1W, M05-2X, M06-2X and M06-L parameterizations) as well as high-level ab initio MP2 and CCSD(T) methods. Using the MP2 and CCSD(T) results as benchmarks, the effects of exchange-correlation functionals and basis sets were carefully examined. Each functional has its advantage in certain aspects; for example, M05-2X and X3LYP yield better geometries, and the capability of these two functionals to distinguish the relative energies between isomers are more similar to MP2. The size of the split-valence basis set (6-31G or larger), diffuse functions on the oxygen atom, and d(p) polarization on the oxygen (hydrogen) atom are crucial for an accurate description of intermolecular interaction in water clusters. The 6-31+G(2d,p) basis set is thus recommended as a compromise between computational efficiency and accuracy for structural description. We further demonstrated that the numerical basis set, TNP, performs satisfactorily in describing structural parameters of water clusters.