赵珺

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:科学技术研究院院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:控制科学与工程学院

学科:控制理论与控制工程. 系统工程. 模式识别与智能系统

联系方式:0411-84707582

电子邮箱:zhaoj@dlut.edu.cn

扫描关注

论文成果

当前位置: 赵珺个人主页 >> 科学研究 >> 论文成果

Fast Generalized Reduced Gradient Algorithm Based Data Reconciliation Model

点击次数:

论文类型:会议论文

发表时间:2017-01-01

收录刊物:CPCI-S

卷号:2017-January

页面范围:8791-8795

关键字:data reconciliation; nonlinear programming; GRG; PSO

摘要:More and more industrial production companies apply computer to process control, operation optimization and performance evaluation, which significantly increases the amount of data collected. Accurate measurement data can provide solid foundation for monitoring, optimization, scheduling, and decision analysis. However, measurement data is inevitably interfered by errors from multiple processes. This kind of interference makes measurement data deviate from real value and cannot meet some of the conservation laws and process constraints, which can make the production performance severely deteriorated. This paper proposed a fast Generalized Reduced Gradient (GRG) algorithm based data reconciliation model, which focuses on nonlinear data reconciliation problems. This method is on the basis of GRG algorithm, which can stably converge close enough to the global optimal solution, and Particle Swarm Optimization (PSO) algorithm is used in the early stage to accelerate the convergence. Iteration step size and selection of base variables are also optimized to accelerate and improve GRG. The proposed method can reduce the computation time under the premise of ensuring accuracy. Experiments on actual industrial data showed that the proposed method could solve the data reconciliation problem efficiently to provide effective data support for production scheduling.