• 更多栏目

    郑勇刚

    • 教授     博士生导师   硕士生导师
    • 主要任职:力学与航空航天学院副院长
    • 其他任职:工程力学系副主任(分管本科生、研究生培养)
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 生物与纳米力学
    • 办公地点:一号综合实验楼620B房间
    • 电子邮箱:zhengyg@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Transient swelling of polymeric hydrogels: A new finite element solution framework

    点击次数:

    论文类型:期刊论文

    发表时间:2016-02-01

    发表刊物:INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES

    收录刊物:SCIE、EI

    卷号:80

    页面范围:246-260

    ISSN号:0020-7683

    关键字:Hydrogel; Transient swelling; Finite deformation; Diffusion; Finite element

    摘要:The paper presents a new solution framework for the transient swelling of polymeric hydrogels which couples finite deformation and fluid permeation. Based on the kinematic constraint between the mechanical and diffusion fields, a unified constitutive equation incorporating the effects of both mechanical deformation and chemical swelling and a modified fluid balance equation relating the change rate of the volumetric deformation to the fluid diffusion are introduced. Within the modified theoretical framework, a general finite element (FE) procedure is developed to model the transient behaviors in swelling hydrogels. Because the kinematic constraint is satisfied in advance in the FE algorithm, the concentration of the fluid content could be directly calculated from the converged results and the specific element techniques related to the kinematic constraint (such as the F-bar method and the interpolation modes satisfying the Ladyzenskaja-Babuska-Brezzi (LBB) condition) are not needed. A stable convective boundary condition (BC) for the diffusion field is developed which is proved to be an alternative BC to efficiently model the actual swelling process. Four kinds of two- and three-dimensional coupled elements are presented and used to model transient swelling phenomena with various kinds of BCs, geometries and material distributions, which demonstrate the accuracy, convergence and robustness of the FE algorithm. (C) 2015 Elsevier Ltd. All rights reserved.