论文成果

Faster Region-based Hotspot Detection

发表时间:2019-11-04  点击次数:

论文类型:会议论文

收录刊物:EI、CPCI-S

摘要:As the circuit feature size continuously shrinks down, hotspot detection has become a more challenging problem in modern DFM flows. Developed deep learning techniques have recently shown their advantages on hotspot detection tasks. However, existing hotspot detectors only accept small layout clips as input with potential defects occurring at a center region of each clip, which will be time consuming and waste lots of computational resources when dealing with large full-chip layouts. In this paper, we develop a new end-to-end framework that can detect multiple hotspots in a large region at a time and promise a better hotspot detection performance. We design a joint auto-encoder and inception module for efficient feature extraction. A two-stage classification and regression flow is proposed to efficiently locate hotspot regions roughly and conduct final prediction with better accuracy and false alarm penalty. Experimental results show that our framework enables a significant speed improvement over existing methods with higher accuracy and fewer false alarms.

发表时间:2019-01-01

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学

访问量: | 最后更新时间:-- | 开通时间:-- |手机版