Zhu Yichao
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Gender:Male
Alma Mater:University of Oxford
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics
Discipline:Solid Mechanics. Applied Mathematics
Business Address:Room 523, 1st Lab Building
E-Mail:yichaozhu@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2017-08-01
Journal:JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Included Journals:EI、SCIE、Scopus
Volume:105
Page Number:1-20
ISSN No.:0022-5096
Key Words:Homogenisation; Sink saturation; Nanovoids; Grain boundary; Long-time behaviour under irradiation
Abstract:Various nanoscale materials that contain high density of interfaces highlight an optimistic perspective of discovering radiation tolerant materials. However, given the huge dimensional contrast between the core structural components of nuclear reactors and many nanoscale treatments for improving materials radiation resistance, the corresponding predictive models are required to possess a delicate balance between resolution and efficiency. Motivated by this, a three-scale homogenisation scheme is introduced in this article, and a continuum model for the long-time interstitial-sink behaviour at interfaces is derived with all important nanoscopic parameters and mechanisms properly retained. Compared with the existing works alike, the derived model shows its advantage in at least two aspects. First, it incorporates the collective effect of multiple sinks on interstitial migration which is not fully taken into account in conventional works, and the accuracy of the continuum description to the underlying mechanisms is thus improved substantially. Second, the derived model naturally formulates a sink saturation condition under which sinks no longer absorb point defects. The present work originates from developing a long-time predictive model for a recent proposal for improving the radiation tolerance of materials by Chen et al. (2015), and the derived three-scale homogenisation approach can be naturally generalised to model the collective behaviour of other types of sink-defect interactions. (C) 2017 Elsevier Ltd. All rights reserved.
招生信息
招生类别:(计划2023、2024年秋季入学)
博士研究生1名、硕士研究2名。有意向者欢迎邮件联系:yichaozhu@dlut.edu.cn
导师信息:
朱一超,大连理工大学工程力学系教授,博士生导师,国家级人才项目青年项目入选者。本科毕业于复旦大学,于牛津大学获得博士学位。致力于“基于微观,预测宏观”的跨尺度建模分析研究。相关研究成果主要应用于核材料、3D打印、复合材料研发等国际前沿技术或国家重大需求领域。在固体力学旗舰期刊JMPS上发表论文近10篇,另有工作发表于PRL、CMAME、Scripta Materialia等物理学计算力学或材料学顶级期刊。同时与中国核动力研究设计院等单位深度合作,将研究成果应用于工程实践。
育人理念:
帮助学生完成从“学习者”到“研究者”的角色转换。注重学与思结合的科研方式,学生有充分的自由进行探索,同时安排定期讨论,答疑解惑;注重交流,承诺为博士生提供参加高水平国际会议或海内外顶尖学府(如牛津大学、约翰霍普金斯大学等)访问交流的机会,为所有学生提供在海内外学术会议介绍个人研究成果的机会;注重科研与生活的平衡,参考学部最高标准发放科研津贴,鼓励学生在工作方向明确的情况下自主分配科研-休假时间。
毕业愿景:
ü 之于博士生,帮助您在跨尺度建模领域形成国际前沿视角,在您努力的前提下,力争让本科直博/硕博连读生5年完成学业,已有硕士学位的学生3-4年完成学业,发表高水平第一作者论文3篇以上,为您未来找工作搭建高水平的平台;
ü 之于希望继续深造的硕士生,会按博士标准培养,发表科研论文,并全力推荐往海内外高校继续深造;
ü 之于希望去工业界的硕士生,将参与横向课题,向对口的国家级科研单位的推荐工作机会。
研究方向:
课题组致力于推动经典渐近分析方法与新兴机器学习算法深度融合,以微观机制视角分析材料宏观行为,发展高效保真数值模拟方法,为材料复杂跨尺度行为的预测提供扎实的理论保障与高效的仿真工具。具体包括:
a) 以晶体微结构演化视角发展辐照环境下材料力学行为仿真模型;
b) 合金材料内部元素演化与其宏观性能定量关系研究;
c) 3D打印复杂构型宏观物理性质建模分析;
d) 其它跨尺度系统(如复合材料等)之数学建模与模拟仿真研究。
一些要求:
a) 目标清晰,有科研热情,对编程不排斥
b) 力学、数学、物理、计算机专业优先
c) 先修课程:数学物理方法、弹性力学、计算方法
d) 有一定的英文基础