个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 大连理工大学宁波研究院
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
学科:材料加工工程
办公地点:大连理工大学主校区铸造中心401室
宁波市江北区育才路26号大连理工大学宁波研究院
电子邮箱:znchen@dlut.edu.cn
Effects of Nb addition on the microstructures and mechanical properties of a precipitation hardening Cu-9Ni-6Sn alloy
点击次数:
论文类型:期刊论文
发表时间:2018-02-07
发表刊物:MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
收录刊物:SCIE、EI
卷号:715
页面范围:340-347
ISSN号:0921-5093
关键字:Cu-9Ni-6Sn alloy; Grain refinement; Precipitation hardening; Mechanical property
摘要:The effects of Nb addition on the microstructures and mechanical properties of the casting Cu-9Ni-6Sn alloy were investigated in the present work. Microstructures of the as-cast and heat treated samples were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results demonstrate that, with the addition of Nb from 0.0 wt% to 0.35 wt%, the average grain size of Cu-9Ni-6Sn alloys in the as-cast condition is reduced from 570 mu m to 156 mu m due to the formation of Nb-bearing intermetallic compounds. The occurrence of NbNi3 particles after solution treatment is considered as an important factor that leads to the postponed hardening response to age treatment in the early stage. For the peak-aged samples with 0.35 wt% Nb addition, the tensile strength is increased from 768.9 to 913.3 MPa when compared to that of the Nb-free samples. In addition, for the peak-aged samples, the hardness increment is mainly attributed to the coherent stress generated by the ordered gamma' phases, which results in practically identical hardness (similar to 350 HV) regardless of the Nb additions. Furthermore, an optimized combination of UTS (719.5 MPa), elongation (13.76%) and electrical conductivity (11.37% IACS) of the Cu-9Ni-6Sn alloy can be achieved by the 0.35 wt% Nb addition accompanied with aging treatment at 375 degrees C for 1 h.