个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 软件工程研究所副所长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:软件学院、国际信息与软件学院
电子邮箱:zren@dlut.edu.cn
Misleading classification
点击次数:
论文类型:期刊论文
发表时间:2014-05-01
发表刊物:SCIENCE CHINA-INFORMATION SCIENCES
收录刊物:SCIE、EI
卷号:57
期号:5
页面范围:1-17
ISSN号:1674-733X
关键字:misleading classification; naive Bayes; K-nearest neighbor
摘要:In this paper, we investigate a new problem-misleading classification in which each test instance is associated with an original class and a misleading class. Its goal for the data owner is to form the training set out of candidate instances such that the data miner will be misled to classify those test instances to their misleading classes rather than original classes. We discuss two cases of misleading classification. For the case where the classification algorithm is unknown to the data owner, a KNN based Ranking Algorithm (KRA) is proposed to rank all candidate instances based on the similarities between candidate instances and test instances. For the case where the classification algorithm is known, we propose a Greedy Ranking Algorithm (GRA) which evaluates each candidate instance by building up a classifier to predict the test set. In addition, we also show how to accelerate GRA in an incremental way when naive Bayes is employed as the classification algorithm. Experiments on 16 UCI data sets indicated that the ranked candidate instances by KRA can achieve promising leaking and misleading rates. When the classification algorithm is known, GRA can dramatically outperform KRA in terms of leaking and misleading rates though more running time is required.