个人信息Personal Information
副教授
硕士生导师
性别:女
毕业院校:南开大学
学位:博士
所在单位:化工海洋与生命学院
学科:环境科学
办公地点:D06-403-4
联系方式:0427-2631790
电子邮箱:zhaoshuyan@dlut.edu.cn
Fate of 6:2 fluorotelomer sulfonic acid in pumpkin (Cucurbita maxima L.) based on hydroponic culture: Uptake, translocation and biotransformation
点击次数:
论文类型:期刊论文
发表时间:2019-09-01
发表刊物:ENVIRONMENTAL POLLUTION
收录刊物:EI、SCIE、PubMed
卷号:252
期号:Pt A
页面范围:804-812
ISSN号:0269-7491
关键字:6:2 FTSA; Pumpkin; Uptake and translocation; Biotransformation; PFCAs
摘要:6:2 fluorotelomer sulfonic acid (6:2 FTSA) is currently used as an alternative to perfluorooctanesulfonate (PFOS) and is widely detected in the environment. The uptake, translocation and biotransformation of 6:2 FTSA in pumpkin (Cucurbita maxima L.) were investigated by hydroponic exposure for the first time. The root concentration factor (RCF) of 6:2 FTSA was 2.6-24.2 times as high as those of perfluoroalkyl acids (PFAAs) of the same or much shorter carbon chain length, demonstrating much higher bioaccumulative ability of 6:2 FTSA in pumpkin roots. The translocation capability of 6:2 FTSA from root to shoot depended on its hydrophobicity. Six terminal perfluorocarboxylic acid (PFCA) metabolites, including perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), perfluorobutanoic acid (PFBA), perfluoropropionic acid (PFPrA) and trifluoroacetic acid (TFA) were found in pumpkin roots and shoots. PFHpA was the primary metabolite in roots, while PFBA was the major product in shoots. 1-aminobenzotriazole (ABT), a cytochromes P450 (CYPs) suicide inhibitor, could decrease the concentrations of PFCA products with dose-dependent relationships in pumpkin tissues, implying the role of CYP enzymes involved in plant biotransformation of 6:2 FTSA. This study indicated that the application of 6:2 FTSA can lead to the occurrence of PFCAs (C2-C7) in plants. (C) 2019 Elsevier Ltd. All rights reserved.