孙文

个人信息Personal Information

研究员

博士生导师

硕士生导师

性别:男

毕业院校:德国马普高分子所

学位:博士

所在单位:化工学院

办公地点:大连理工大学西部校区E-226

联系方式:sunwen@dlut.edu.cn

电子邮箱:sunwen@dlut.edu.cn

扫描关注

个人简介Personal Profile

孙文,大连理工大学精细化工国家重点实验室研究员、博士生导师。201712毕业于德国马普高分子研究所 (Max-Planck-Institute for Polymer Research),获化学博士学位。20183月加入大连理工大学精细化工国家重点实验室任副研究员,202012月任研究员,博士生导师国家优秀青年基金获得者(2020年)。目前担任化工学院院长助理、智能材料化工教育部前沿科学中心主任助理、精细化工国家重点实验室主任助理;中国医药教育学会重症康复委员会副主任委员、中国石油和化学工业联合会高端专用化学品理事会副秘书长、中国化工学会精细化工专业委员会青年委员。 入选辽宁省百千万人才工程培养计划。主持国家自然科学基金面上项目和青年项目、中高校科技领军人才团队项目、辽宁省自然科学基金等多项基金。

针对环境、生命科学中一系列分析检测及肿瘤治疗的关键科学问题,近年来开展了以功能染料为核心用于疾病检测及光驱动治疗的研究工作。共发表SCI论文50余篇。以第一或通讯作者在Nature Chem.J. Am. Chem. Soc. (2)Angew. Chem. Int. Ed (3)Adv. Mater. (3)MatterAdv. Funct. Mater. (6)Adv. Sci. (3)Biomaterials (5)Small (3) Chem. Rev.  Accont. Chem. Res. Coordin. Chem. Rev. 等国际知名学术期刊上发表研究成果。1篇文章入选Hot paper, 5篇入选ESI高被引,多篇文章分别被 JACSAdv. Mater. Adv. Sci.杂志选为封面/内封面。SCI引用7500余次,H 因子45。担任20余种国内外学术期刊的审稿人。获2019年度中国石油和化学工业联合会科技进步一等奖,2023年度侯德榜化工科学技术青年奖。

学术兼职:担任Frontiers in Chemistry (IF: 5.22,  JCRQ2期刊副主编,Smart Molecules 中南大学学报(国际版)编委。

 

 

Selected Publications


2023

 

57. In Vivo Metallophilic Self-assembly of a Light-activated Anticancer Drug. X. Zhou, P. Wang, V. Ramu, L. Zhang, S. Jiang, X. Li, S. Abyar, P. Papadopoulou, Y. Shao, L. Bretin, M. A Siegler, F. Buda, A. Kros, J. Fan, X. Peng, W. Sun*, S. Bonnet*. Nature Chem. 2023, 15, 980-987.

 

56. Near-Infrared Light-Activated Ruthenium Complex-based Photocage for Cancer Phototherapy. G. He, M. He, R. Wang, X. Li, H. Hu, D. Z. Wang, Y. Lu, N. Xu, J. Du, J. Fan, X. Peng, W. Sun*Angew. Chem. Int. Edit. 2023, 62, e202218768 (Front Cover).

 

55. Liposomal Enzyme Nanoreactors based on Nanoconfinement for Efficient Anti-Tumor Therapy. R.Wang,Y.Yu, M. Gai, A. M. Maroto, S. Morsbach, X. Xia, M. He, J. Fan, X. Peng, K. Landfester*, S. Jiang*, W. Sun*. Angew. Chem. Int. Edit. 2023, 62, e202308761.

 

54. Cyclic Ruthenium-Peptide Conjugates as Integrin-Targeting Photoactivated Chemotherapy Prodrugs for the Treatment of Brain Tumors. L. Zhang, P. Wang, X. Zhou, L. Bretin, X. Zeng, Y. Husiev, E. Rivas, L. Wijaya, T. Biver, S. Dévédec, W. Sun,* S. Bonnet*. J. Am. Chem. Soc. 2023, 145, 14963-14980.

 

53. A Fluorescent Chemosensor for Long-Term Tracking of Cancer Cell Metastasis and Invasion via Enzyme-Activated Anchoring. T. Liu, X. Xia, R. Wang, X. Rong, Z. Su, J. Du, J. Fan, X. Peng, W. Sun*. Adv. Funct. Mater. 2023, DOI:10.1002/adfm.202304347.

 

52. The Construction of Polyphotocage Platform for Anticancer Photochemotherapy. M. He, R. Wang, R. Zhang, P. Miao, P. Wang*, Z. Wei, X. Leng, Y. Li*, J. Fan, X. Peng, W. Sun*Adv. Funct. Mater. 202333, 2300780.

 

51. Heptamethine Cyanine Dyes with Ultra-efficient Excited-state Nonradiative Decay for Synergistic Photothermal Immunotherapy. X. Xia, C. Shi, S. He, R. Wang, Z. Zhang, Y. Hu, J. Cao, T. Liu, D. Zhou, W. Sun*, J. Fan*, X. Peng. Adv. Funct. Mater. 2023https://doi.org/10.1002 /adfm.202300780

 

50. The chronological evolution of fluorescent GPCR probes for bioimaging. Y. Wu, B. Zhang*, H. Xu, M. He, X. Deng, L. Zhang, Q. Dang, J. Fan, Y. Guan*, X. Peng, W. Sun*Coordin. Chem. Rev.2023480, 215040

 

49. Carrier‐Free ATP‐Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near‐Infrared Light. Z. Su, D. Xi, Y. Chen, R. Wang, X. Zeng, T. Xiong, X. Xia, X. Rong, T. Liu, W. Liu, J. Du, J. Fan, X. Peng, W. Sun*Small 202319, 2205825.

 

48. Biomimetic Nanovaccines Potentiating Dendritic Cell Internalization via CXCR4‐Mediated Macropinocytosis, C. Yang, F. Zhang, F. Chen, Z. Chang, Y. Zhao, D. Shao, W. Sun*, W. Dong, Z Wang*. Adv. Healthcare Mater. 202312, 2202064.

 

47. Recent Progress of Self-Immobilizing and Self-Precipitating Molecular Fluorescent Probes for Higher-Spatial-Resolution Imaging.J. Yan, H. Liu, Y. Wu, B. Niu, X. Deng, L. Zhang, Q. Dang, Y. Wang, X. Lu, B. Zhang*, W. Sun* Biomaterials2023301, 122281.

 

46. The importance of and difficulties involved in creating molecular probes for a carbon monoxide gasotransmitter. H. Liu, T. Liu, Q. Qin, B. Li, F. Li, B. Zhang*, W. Sun* Analyst, 2023, 148, 3952-3970.

 

45. Near-Infrared and Highly Photostable Squaraine-based Nanoparticles for Photoacoustic Imaging Guided Photothermal Therapy. X. Rong, X. Xia, R. Wang, Z. Su, T. Liu, Z. Zhang, S. Long, J. Du, J. Fan, W. Sun*, X. Peng. Dyes Pigments, 2023, 211, 111055.


2022

44. Gene Therapy of Brain Cancer by Drug Delivery Nanocapsules. X.-Q. Zhou, R. Wang, W Sun*, S. Bonnet*. Matter, 2022, 3, 2502. 


43. Recent Advances in Redox-Responsive Nanoparticles for Combined Cancer Therapy. Y. Yang, W. Sun*, Nanoscale Advances, 2022, 4, 3504-3516. Invited Minireview.


42.Tumor-microenvironment triggered signal-to-noise boosting nanoprobes for NIR-IIb fluorescence imaging guided tumor surgery and NIR-II photothermal therapy. P. Wang, J. Li, M. Wei, R. Yang, K. Lou, Y. Dang. W. Sun*, F. Xue, X. Liu. Biomaterials, 2022, 287, 121636.


41. H-Aggregates of Prodrug-Hemicyanine Conjugate for Enhanced Photothermal Therapy and Sequential Hypoxia-Activated Chemotherapy, X. Li, M. Yang, J. Cao, H. Gu, W. Liu, T. Xia, W. Sun*, J. Fan*, X. Peng. ACS Mater. Lett. 2022, 4, 724-732.


40. A Glutathione Activatable Pro-drug-photosensitizer for Combined Chemotherapy and Photodynamic Therapy. Y. Yang, Y. Zhang, R. Wang, X. Rong, T. Liu, X. Xia, J. Fan, W Sun*, X. Peng. Chinese Chem. Lett. 2022, 33, 4583-4586.


39. Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. M. He, R. Wang, P. Wan, H. Wang, Y. Cheng, P. Miao, Z. Wei, X. Leng, Y. Li*, J. Du, J. Fan, W. Sun*, and X. Peng. Biomacromolecules 2022, 23,1733-1744. (Front Cover)


38. Red-Light-Triggered Self-Destructive Mesoporous Silica Nanoparticles for Cascade-Amplifying Chemo-Photodynamic Therapy Favoring Antitumor Immune Responses. Y. Yang, F. Chen, N. Xu, Q.Yao, R. Wang, X. Xie, F. Zhang, Y. He e, D. Shao *, W. Dong, J. Fan, W. Sun *, X. Peng. Biomaterials, 2022, 281, 121368.


37. A Sulfur-Substituted Hemicyanine for Cancer Photothermal Therapy with-out Influence of Intracellular Viscosity. X. Xia, R. Wang, Y. Hu, Q. Yao, S. Long, W. Sun*, J. Fan*, X. Peng. Science China Chemistry, 2022, 65, 821-828. 


36. Amorphous Ultra‐Small Fe‐Based Nanocluster Engineered and ICG Loaded Organo‐Mesoporous Silica for GSH Depletion and Photothermal‐Chemodynamic Synergistic Therapy. J. Li, H. Tian, F. Zhu, S. Jiang, M. He, Y. Li, Q. Luo, W. Sun*, X. Liu*, P. Wang*. Adv. Healthcare Mater, 2022, 11, 2201986.



2021

35. Strong π−π Stacking Stabilized Nanophotosensitizers: Improving Tumor Retention for Enhanced Therapy to Large Tumor in Mice. D. Xi, N. Xu, X. Xia, C. Shi, X. Li, D. Wang, S. Long, J. Fan, W. Sun*, X. Peng*. Adv. Mater. 2022, 34, 2102797.


34. A Sequential Dual-Model Strategy Based on Photoactivatable Metallopolymer for On-Demand Release of Photosensitizers and Anticancer Drugs. M. He, G. He, P. Wang, S. Jiang, Z. Jiao, D. Xi, P. Miao, X. Leng, Z. Wei,* Y. Li,* Y. Yang, R. Wang, J. Du, J. Fan, W. Sun,* X. Peng. Adv. Sci. 2021, 8, 2103334. (Front Cover)


33. A Glutathione Activatable Photosensitizer for Combined Photodynamic and Gas Therapy under Red Light Irradiation. R. Wang, X. Xia, Y. Yang, X. Rong, T. Liu, Z. Su, X. Zeng*, J. Du, J. Fan, W. Sun*, X. Peng. Adv. Healthcare Mater. 2021, doi.org/10.1002/adhm.202102017.


32. An Organic Nanotherapeutic Agent Self-Assembled from Cyanine and Cu (II) for Combined Photothermal and Chemodynamic Therapy. X. Li, D. Xi, M. Yang, W. Sun,* X. Peng, and J. Fan*, Adv. Healthcare Mater. 2021, 2101008.  (highlighted by Advanced Science News)


31. Photoresponsive Metallopolymer Nanoparticles for Cancer Theranostics. M. He, F. Chen, D. Shao, P. Weis, Z. Wei, and W. Sun*. Biomaterials 2021, 275, 120915.


30. Coordination and Redox Dual-Responsive Mesoporous Organosilica Nanoparticle Amplify Immunogenic Cell Death for Cancer Chemo-Immunotherapy. W. Sun* Small, 2021, 17, 2100006.

 

29. Red-Light-Responsive Ru Complex Photosensitizer for Lysosome Localization Photodynamic Therapy. G. He, N. Xu, H. Ge, Y. Lu, R. Wang, H. Wang, J. Du, J. Fan, W. Sun*, X. Peng. ACS Applied Materials & Interfaces. 2021, 13,19572-19580.

 

28. A Color Turn-On Fluorescent Probe for Real-Time Detection of Hydrogen Sulfide and Identification of Food Spoilage. P. Xiao, J. Liu, Z. Wang, F. Tao, L. Yang, G. Yuan, W. Sun*, X. Zhang*. Chem. Commun. 2021, 57. 5012-5015.



 

2020

27. Red Light-Triggered Polyethylene Glycol Deshielding from Photolabile Cyanine-Modified Mesoporous Silica Nanoparticles for On-Demand Drug Release. X. Li, W. Sun*, Z, Zhang, Y. Kang, J. Fan*, X. Peng. ACS Applied Bio Materials 2020, 3, 11, 8084-8093.


26. A photosensitizer-inhibitor conjugate for photodynamic therapy with simultaneous inhibition of treatment escape pathways. M. Xiao, J. Fan*, M, Li, F, Xu, X. Zhao, D. Xi, H. Ma, Y. Li, J. Du, W. Sun*, X.Peng. Biomaterials. 2020, 257, 120262.


25. Synergistic Anticancer Therapy by Ovalbumin Encapsulation-Enabled Tandem ROS Generation. S. Jiang, M. Xiao, W. Sun*, D. Crespy, V. Mailänder, X. Peng, J. Fan,* K. Landfester* Angew. Chem. Int. Edit. 2020, 59, 2-11. (Hot paper)

 

24.Protein nanoparticles containing Cu(II) and DOX for efficient chemodynamic therapy via self-generation of H2O2R. Cao , W. Sun*, Z. Zhang, X. Li, J. Du, J. Fan, X. Peng. Chinese Chem. Lett. 2020. 31, 3127-3130.


23. The Self-Assembly of a Cyclometalated Palladium Photosensitizer into Protein-Stabilized Nanorods Triggers Drug Uptake In Vitro and In Vivo. X. Zhou, M. Xiao, V. Ramu, J. Hilgendorf, X. Li, P. Papadopoulou, M. Siegler, A. Kros, W. Sun*, S. Bonnet*. J. Am. Chem. Soc. 2020, 142, 10383.

 

22. NIR Light‐Driving Barrier‐Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy. D. Xi, M. Xiao, J. Cao, L. Zhao, N. Xu, J. Fan, K. Shao, W. Sun*,  X. Yan, X. Peng*.  Adv. Mater.  2020,  32, 1907855. (ESI highly cited)


21.Sequential Enzyme Activation of a “Pro-staramine”-Based Nanomedicine to Target Tumor Mitochondria. Y. Du, Y. Li, X. Li, C. Jia, L. Wang, Y. Wang, Y. Ding, S. Wang, H. Sun, W. Sun*, J. Tu*, C. Sun*. Adv. Funct. Mater. 2020, 30, 1904697.


2019

20. Activity-Based Sensing and Theranostic Probes Based on Photoinduced Electron Transfer. W. Sun, M, Li, J. Fan, X. Peng. Accounts. Chem. Res. 2019, 52, 2818.


19. Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Anti-Metastatic Immunotherapy. Z. Wang, F. Zhang, D. Shao*, Z. Chang, L. Wang, H. Hu, X. Zheng, X. Li, F. Chen, Z. Tu, M. Li, W. Sun*, L. Chen, W. Dong*. Adv. Sci. 2019, 1901690.

 

18. Boron Dipyrromethene Nanophotosensitizers for Anticancer Phototherapies. W. Sun, X. Zhao, J. Fan,* X. Peng. Small 2019, 1804927. (highlighted by Advanced Science News)


17. Oligo Hyaluronan-Coated Silica/Hydroxyapatite Degradable Nanoparticles for Targeted Cancer Treatment. Y. Kang, W. Sun (co-first author), S. Li, M. Li, J. Fan*, J. Du, X.‐J. Liang*, X. Peng. Adv. Sci. 2019, 1900716.


16. "Off-on" Swithing of Intracelluar Singlet Oxygen Release under Biocompatible Conditions. E. Ucar, D. Xi, O. Seven, C. Kaya, X. Peng. W. Sun*, E. Akkaya*. Chem Commun. 2019, 55, 13808-13811.


15. A Novel Mn-Cu Bimetallic Complex for Enhanced Chemodynamic Therapy with Simultaneous Glutathione Depletion. S. Cao*, J. Fan, W. Sun*, F. Li, X. Tai, X. Peng. Chem Commnu. 2019, 55, 12956-12959.


2018

14. Red-Light-Controlled Release of Drug-Ru Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Enviroment. W. Sun, Y. Wen, R. Thiramanas, M. Chen, J. Han, N. Gong, M. Wagner, S. Jiang, M. S. Meijer, S. Bonnet, H.-J.Butt, V. Mailänder,* X.-J. Liang,* S. Wu*. Adv. Funct. Mater. 2018, 1804227.


13. Aminopeptidase N-activated Theranostic Prodrug for NIR Tracking of Local Tumor Chemotherapy. M. Xiao, W. Sun (co-first author), J. Fan,* J. Cao, Y. Li, K. Shao, M. Li, X. Li, Y. Kang, W. Zhang, S. Long, J. Du, X. Peng. Adv. Funct. Mater. 2018, 1805128. (Selected as inside cover)


12. Biodegradable Drug-doped Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors. W. Sun, J. Fan*, S. Wang, Y. Kang, J. Du, X. Peng, ACS Appl. Mater. Inter 201810, 7832-7840.


11. Photoresponsive Ruthenium-Containing Polymers: Potential Polymeric Metallodrugs for Anticancer Phototherapy. W. Sun, X. Zeng, S Wu*. Dalton Trans 201847, 283-286.


10. Electrochemical sensor for determination of ractopamine based on aptamer/octadecanethiol Janus particles. Y. Zhou, Y. Yang, X. Deng, G. Zhang, Y. Zhang, C. Zhang, S. Shuang*, Y. He*, W Sun*. Sensor Actuat B-Chem. 2018, 276, 204–210.


9. Ratiometric Real-Time Monitoring of Hydroxyapatite-DOX Nanotheranostic Agents for On-Demand Tumor Targeted Chemotherapy. K. Yan, W. Sun (co-first author), J. Fan*, Z. Wei, S. Wang, M. Li, Z. Zhang, Y. Xie, J. Du, X. Peng. Mater. Chem. Front. 2018, 2, 1791.


8. Reconfiguring Surface Functions Using Visible-Light Controlled Metal-Ligand Coordination. C. Xie, W. Sun, H. Lu, A. Kretzschmann, J. Liu, M. Wagner, H.-J. Butt, X. Deng*, S. Wu*. Nat. Commun. 2018, 9, 3842.

 

Before 2018

7. An Amphiphilic Ruthenium Polymetallodrug for Combined Photodynamic Therapy and Photochemotherapy In Vivo. W. Sun, S. Li, B. Häupler, J. Liu, S. Jin, W. Steffen, U. S Schubert, H.-J. Butt, X.-J. Liang,* S. Wu* Adv. Mater. 2017, 29, 1603702. (Selected as inside cover)


6. Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go? W. Sun, R. T., L. D. Slep, X. Zeng, V. Mailänder,* S. Wu*. Chem. Eur. J 201723, 10832-10837.


5. Recent Development of Chemosensors Based on Cyanine Platforms. W.  Sun, S. Guo, C. Hu, J. Fan, X. Peng* Chem. Rev. 2016, 116, 7768-7817. (ESI highly cited)


4. Ruthenium-Containing Block Copolymer Assemblies: Red-Light-Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and Anticancer Phototherapy. W. Sun, M. Parowatkin, W. Steffen, H.-J. Butt, V. Mailänder, S. Wu*. Adv. Healthcare Mater 20165, 467-473. (Selected as cover picture)

 

3. A Fluorescent Probe for Site I Binding and Sensitive Discrimination of HSA from BSA. J. Fan*, W. Sun, Z. Wang, X. Peng, Y Li*, J. Cao. Chem. Comm. 2014, 50, 9573-9576.


2. A Two-Photon Fluorescent Probe with Near-Infrared Emission for Hydrogen Sulfide Imaging in Biosystems. W. Sun, J. Fan*, C. Hu, J. Cao, H. Zhang, X. Xiong, J. Wang, S. Cui, S. Sun, X. Peng*. Chem. Comm. 2013, 49, 3890-3892. (ESI highly cited)


1. An ICT-based Ratiometric Probe for Hydrazine and Its Application in Live Cells. J. Fan*, W. Sun, M. Hu, J. Cao, G. Cheng, H. Dong, K. Song, Y. Liu, S. Sun, X. Peng*. Chem. Comm. 2012, 48, 8117-8119.


 

 

 

 

 

 

 

 

 

 

 

 

 

 


  • 教育经历Education Background
  • 工作经历Work Experience
    2014.3 2017.12
    • 德国马普高分子所
    • 化学
    • 博士
  • 研究方向Research Focus
  • 社会兼职Social Affiliations

    团队成员Research Group

    彭孝军院士团队

    彭孝军院士课题组长期招聘博士后 课题组依托大连理工大学精细化工国家重点实验室,长期从事功能染料的设计与合成、光动力治疗、刺激响应性药物释放等相关领域的研究,取得了一系列创新性的研究成果。现因课题组发展需要,诚聘博士后2名。课题组拥有共聚焦荧光显微镜(单、双光子)、小动物成像仪、超声治疗仪、声动力测试系统、核磁共振成像等大型仪器设备,将为研究人员提供良好的实验平台。 ◆ 研究方向:生物医用纳米材料的制备及生物效应;光敏感材料及生物应用 ◆ 福利待遇: 1.薪酬:按学校规定博士后薪酬分为年薪20万(税前), 30万(税前), 40 万(税前)三个档次。 2.福利待遇:在站博士后享受与本校职工相同的医疗费报销政策和工会福利。 3.住房:学校为博士后提供校内两室一厅公寓(70m2),房内应配备家具、煤气灶具、热水器等设施。博士后进站后向学校申请住房、签署协议,并按时交纳房租(900元每月)、水电等费用。 ◆ 应聘条件: 1. 工作勤奋踏实,有责任心和团队协作精神。 2. 有良好的英文阅读和写作能力。 3. 具有染料合成,或生物材料的研究背景;取得相关领域博士学位,并在化学、材料等主流期刊发表过数篇研究论文。 请提交个人简历等申请材料...