Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
石川

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Female
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:化学学院
Discipline:Physical Chemistry (including Chemical Physics). Chemical Engineering
Business Address:知化楼C201
E-Mail:chuanshi@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Non-thermal plasma-assisted NOx storage and reduction over cobalt-containing LNT catalysts

Hits : Praise

Indexed by:Journal Papers

Date of Publication:2015-12-01

Journal:CATALYSIS TODAY

Included Journals:SCIE、EI、CPCI-S、Scopus

Volume:258

Page Number:386-395

ISSN No.:0920-5861

Key Words:Cobalt; Palladium; NOx storage-reduction; Lean NOx trap; Non-thermal plasma

Abstract:Based on their high NO oxidation capacity (NOC) and NOx storage capacity (NSC), cobalt-containing LNT catalysts of the type Co/Ba/Al and Pd/Co/Ba/Al were tested under NOx storage-reduction (NSR) conditions, as well as in an H-2-plasma assisted NSR process. For comparison purposes, a traditional Pt/Ba/Al catalyst was tested under the same conditions. The Co/Ba/Al catalyst exhibited similar catalytic properties to those of the Pt/Ba/Al catalyst when an H-2-plasma was employed in the rich phase to assist reduction of the stored NOx. However, the NOx removal efficiency was greatly depressed by the presence of H2O and CO2 in the feed. Notably, the addition of Pd to the Co/Ba/Al sample greatly lessened the inhibiting effects of H2O and CO2 on plasma-assisted cycle-averaged NOx conversion, this being due to the excellent NOx storage performance of the Pd/Co/Ba/Al sample even in the presence of H2O and CO2. The results of the present study show that by combining the high NOx storage capacity of Pd/Co/Ba/Al in the lean phase with non-thermal plasma-assisted activation of the reductant in the rich phase, high NOx conversion can be obtained over a broad temperature window of 150-350 degrees C. (C) 2015 Elsevier B.V. All rights reserved.