• 更多栏目

    段玉平

    • 教授     博士生导师   硕士生导师
    • 主要任职:国际教育学院院长、直属党支部书记、留学生办公室主任
    • 其他任职:辽宁省凝固控制与数字化制备技术重点实验室副主任
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:材料科学与工程学院
    • 学科:材料加工工程
    • 办公地点:铸造中心213
    • 联系方式:0411-84708446
    • 电子邮箱:duanyp@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Low-temperature synthesis of manganese oxide-carbon nanotube-enhanced microwave-absorbing nanocomposites

    点击次数:

    论文类型:期刊论文

    发表时间:2018-12-01

    发表刊物:JOURNAL OF MATERIALS SCIENCE

    收录刊物:SCIE、Scopus

    卷号:53

    期号:24

    页面范围:16288-16302

    ISSN号:0022-2461

    关键字:Dielectric properties; Impedance matching (electric); Low temperature effects; Manganese oxide; Microwaves; Nanocomposites; Oxides; Temperature; Yarn, Conductivity loss; Low temperature method; Low temperature synthesis; Microwave absorbing; Microwave absorbing materials; Precursor solutions; Relaxation polarization; Superior microwave, Carbon nanotubes

    摘要:Noting that the dielectric properties of manganese oxide make it a promising microwave-absorbing material, a low-temperature method to deposit crystalline MnO2 over carbon nanotubes (CNTs) is developed. Adjusting the pH of the precursor solution allows control over the phases and morphologies of the synthesized manganese oxides MnO2 and Mn3O4 that have minimum reflection losses of -11dB and -6dB, respectively. The synthesized CNT-MnO2 and CNT-Mn3O4 nanocomposites are superior microwave absorbers than simpler physical mixtures of CNTs and manganese oxides, with reflection losses as high as -19dB at 9.5GHz and -34dB at 4GHz, and have wider absorption bands than pure manganese oxides. Coating CNTs with manganese oxide not only increases dielectric and magnetic losses, but also improves the impedance match between free space and the absorber. The addition of CNTs to pure MnO2 and Mn3O4 improves impedance matching by enhancing the relaxation polarization and conductivity losses, magnetic loss, including contributions form eddy current and natural resonance. This facile, low-cost, scalable, high-yield method produces an enhanced microwave-absorbing nanocomposite.